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Upper Confidence bounds for 
Trees (UCT) 
n  The UCT algorithm (Kocsis and Szepesvari, 2006), 

based on the UCB1 multi-armed bandit algorithm 
(Auer et al, 2002) has changed the landscape of 
game-playing programs in recent years. 
¨  First program capable of master level play in 9x9 Go (Gelly 

and Silver, 2007) 
¨  UCT-based agent is a two-time winner of the AAAI General 

Game Playing Contest (Finnsson and Bjornsson, 2008) 
¨  Also successful in Kriegspiel (Ciancarini and Favini, 2009) 

and real-time strategy games (Balla and Fern, 2009) 
¨  Key to Google’s AlphaGo success. 



Understanding UCT 

Despite its impressive track record, our current 
understanding of UCT is mostly anecdotal. 

 
Our work focuses on gaining better insights into 
UCT by studying its behavior in search spaces 

where comparisons to Minimax search are feasible. 



“Find the best slot machine” 
--- while trying to make as much 

money as possible 
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Every node in the search tree is  
treated like a multi-armed bandit. 
“Find the best slot machine” 

--- while trying to make as much 
money as possible 

 
 

The UCB score is computed  
for each child and the best 
 scoring child is chosen for  

expansion 

The UCT Algorithm 

Exploitation term 
Q(s’) is the estimated utility of state s’


Exploration term 
n(s) is the number of visits to state s


Estimated utility = 
the average 

payout of arm so far  

Thm: Non-optimal arms are 
sampled at most 

log(n) times!  

Strategy? 
What would you 
want to prove? 
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A random playout is performed to 
estimate the utility R (+1,0, or -1) 
of this state 

The UCT Algorithm 

At the opponent’s nodes, a 
symmetric lower confidence bound 
is minimized to pick the best move 

We descend the tree by starting at 
the root node and repeatedly  
selecting the best scoring node 
 

Node with unexplored child, a new 
child is created 

Incrementally 
grow game tree 
by creating 
“lines of play” 
from the top.  
 
&  
 
Update 
estimates of 
board values. 
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An averaging backup is used to update 
the value estimates of all nodes on the  

path from the root to the new node 

The UCT Algorithm 

Visit count update 

State utility update 

Select each child node based on UCB 
scheme. 



UCT versus Minimax 

UCT Tree Minimax Tree 

•  Asymmetric tree 
•  Best-performing method 

for Go 

•  Full-width tree up to some 
depth bound k 

•  Best-performing method 
for eg Chess 



Search Spaces 
n  Minimax performs poorly in Go due to the large 

branching factor and lack of good board eval 
n  To understand UCT better, we need domain with 

another competitive method. 
n  Considered domains where Minimax search 

produces good play 
¨ Chess 

n  A domain where Minimax yields world-class play but UCT 
   performs poorly 

¨ Mancala 
n  A domain where both Minimax and UCT yield competent 

players ‘out-of-the-box’ 

¨ Synthetic games (ongoing work) 



Mancala 

n  A move consists of picking up all the stones from a pit and 
‘sowing’ (distributing) them in a counter-clockwise fashion 

n  Stones placed in the stores are captured and taken out of 
circulation 

n  The game ends when one of the sides has no stones left 
n  Player with more captured stones at the end wins 

Both UCT and Minimax search  
produce good players. 

store 
 

pit 
 



UCT on Mancala 

n  We examine the three key components of UCT 
I.  Exploration vs. Exploitation 
II.  Random playouts 
III.  Info backup: Averaging versus minimax 

n  Insights lead to improved UCT player 
n  We then deploy the winning UCT agent in a novel 

partial game setting to understand how it wins 
  



I) Full-Width versus Selective Search 

Vary the value of the 
exploration constant c 
and measure the win-
rate of UCT against a 
standardized Minimax 
player 

Optimal setting for c 



n  Lesson: UCT challenges general notion that 
forward (i.e. unsafe) pruning is a bad idea in game 
tree search – not necessarily so! Smart exploration/
exploitation driven search can work. 

Previous experience 
game tree search: “full 
width” + selective 
extensions 
outperforms “trying to 
be smart in node 
expansion.” 



II) Random Playouts (Samples) 
n  During search tree construction, UCT estimates 

the value of a newly added node using a “random 
playout” (resulting in a +1, -1, or 0). 

n  Appeal: Very general. Don’t need to construct a 
board/state evaluation function. 

n  But, random games look very different from actual 
games. Any real info in the result of random play? 

n  A: Yes, but it’s a very “faint” signal. Other 
aspects of UCT compensate. 

n  Also, how many playouts (“samples”) per node? 
(surprise) 

  



How many samples per leaf is optimal? 

Given a fixed budget, should we examine fewer nodes 
more carefully or more nodes, with each node 
evaluated less accurately?  

4000 nodes in tree, 5 
playouts per node 

2000 nodes in tree, 10 
playouts per node 

It is better to quickly examine many nodes than to get more random 
playout samples per node.  

a single playout per 
leaf optimal! 

Lesson: There is a weak but useful signal in random game 
playout. *** Single *** sample is enough. 



III) Utility estimates backup:  
     Averaging versus Minimax 
n  UCT uses an averaging strategy to back-up 

reward values. What about using a minimax 
backup strategy? 

n  For random playout information (i.e., a very noisy 
reward signal) averaging is best. 

n  Confirmed on Mancala and with synthetic game 
tree model. 



n  Aside: Related to “infamous” game tree pathology: 
Deeper minimax searches can lead to worse 
performance! (Nau 1982; Pearl 1983). 

 
Phenomenon is related to very noisy heuristics --- such as 
random playout information. 
Minimax uses heuristic estimates only from fringe of the 
explored tree --- ignoring any heuristic information from 
internal nodes. 
UCT’s averaging over all nodes (including internal ones) 
can compensate for pathology and near-pathology effects. 



Improving over random playout info: 
Heuristic evaluation 

n  Unlike Go, we do have a good heuristic 
available for Mancala 
¨ Replace playouts with heuristics: UCTH 

n  Heuristic much less noisy than random playout. 
Therefore, consider minimax backup.  
¨ We call it UCTMAXH 



Allow both algorithms 
to build the same 
sized trees and 
compare their win-
rates  

Lesson: When a state evaluation heuristics is available, use              
               minimax back-up in conjunction with UCT. 



Final step: UCTMAXH versus Minimax 

n  We study the win-rate of UCTMAXH against 
Minimax players searching to various depths 
¨ Both agents use the same state heuristic 

n  We consider a hybrid strategy 

X 

X 

X 

X 

X 

X 

X 

X X 

X X 

X Region with no search traps, play UCTMAXH 
versus Minimax 

Region with search traps, play MM-16 
versus MM-16 



Mancala:  
UCTMAXH vs. Minimax (w. alpha-beta) 

Minimax 
Look-ahead 

Depth 
Win-rate of UCTMAXH 

6 Pits, 4 Stones per Pit 8 Pits, 6 Stones per Pit 
Hybrid Hybrid 

k = 6 0.76 0.72 0.71 0.68 
k = 8 0.76 0.71 0.71 0.67 

k = 10 0.75 0.65 0.69 0.65 
k = 12 0.67 0.61 0.66 0.61 

UCTMAXH outperforms MM UCTMAXH hybrid outperforms+ MM 

Note: exactly same number of nodes expanded. 
Difference fully due to exploration / exploitation strategy of UCT 



UCT recap: 
n  First head-to-head comparison UCT vs. Minimax 

and first competitive domain. 
n  Multi-armed bandit inspired game tree exploration 

is effective. 
n  Random playouts (fully domain-independent) 

contain weak but useful information. Averaging 
backup of UCT is the right strategy. 

n  When domain information is available, use 
UCTMAXH . Outperforms Minimax given exactly 
the same information and # node expansions. 

n  But, what about Chess? 



Chess 

What is it about the nature of the Chess search 
space that makes it so difficult for sampling-style 
algorithms, such as UCT? 

 
We will look at the role of (shallow) search traps 



Search Traps 
Level-3 search trap 
for white 

State at risk 



Search Traps in Chess 

Random Chess Positions Positions from GM Games 

Search traps in Chess are sprinkled throughout  the search 
space. 



Identifying Traps 

n  Given the ubiquity of traps in Chess, how good 
is UCT at detecting them? 
¨ Run UCT search on states at risk 
¨ Examine the values to which the utilities of the children 

of the root node converge 
¨ Compare this to the recommendations of a deep 

Minimax search (the ‘gold-standard’) 



Identifying Traps 

UCT-best Minimax-best Trap move 
Level-1 trap -0.083 -0.092 -0.250 
Level-3 trap +0.020 +0.013 -0.012 
Level-5 trap -0.056 -0.063 -0.066 
Level-7 trap +0.011 +0.009 +0.004 

Utility of move that 
UCT thinks is the 
best 

Utility assigned by 
UCT to the move 
deemed best by 
Minimax 

Utility assigned by 
UCT to the trap move.  
True utility: -1 

For very shallow traps, UCT has little trouble distinguishing 
between good and bad moves 
With deeper traps, good and bad moves start looking the 
same to UCT. UCT will start making fatal mistakes. 



UCT conclusions: 
n  Promising alternative to minimax for adversarial 

search. 
n  Highly domain-independent. 
n  Hybrid strategies needed when search traps are 

present. 
n  Currently exploring applications to generic 

reasoning using SAT and QBF. 
n  Also, applications in general optimization and 

constraint reasoning. 
n  The exploration-exploitation strategy has 

potential in any branching search setting! 

 


