
Adversarial Reasoning:
Sampling-Based Search with the

UCT algorithm

Joint work with
Raghuram Ramanujan and

Ashish Sabharwal

Upper Confidence bounds for
Trees (UCT)
n  The UCT algorithm (Kocsis and Szepesvari, 2006),

based on the UCB1 multi-armed bandit algorithm
(Auer et al, 2002) has changed the landscape of
game-playing programs in recent years.
¨  First program capable of master level play in 9x9 Go (Gelly

and Silver, 2007)
¨  UCT-based agent is a two-time winner of the AAAI General

Game Playing Contest (Finnsson and Bjornsson, 2008)
¨  Also successful in Kriegspiel (Ciancarini and Favini, 2009)

and real-time strategy games (Balla and Fern, 2009)
¨  Key to Google’s AlphaGo success.

Understanding UCT

Despite its impressive track record, our current
understanding of UCT is mostly anecdotal.

Our work focuses on gaining better insights into
UCT by studying its behavior in search spaces

where comparisons to Minimax search are feasible.

“Find the best slot machine”
--- while trying to make as much

money as possible

s

s'

Every node in the search tree is
treated like a multi-armed bandit.
“Find the best slot machine”

--- while trying to make as much
money as possible

The UCB score is computed
for each child and the best
 scoring child is chosen for

expansion

The UCT Algorithm

Exploitation term
Q(s’) is the estimated utility of state s’

Exploration term
n(s) is the number of visits to state s

Estimated utility =
the average

payout of arm so far

Thm: Non-optimal arms are
sampled at most

log(n) times!

Strategy?
What would you
want to prove?

R

A random playout is performed to
estimate the utility R (+1,0, or -1)
of this state

The UCT Algorithm

At the opponent’s nodes, a
symmetric lower confidence bound
is minimized to pick the best move

We descend the tree by starting at
the root node and repeatedly
selecting the best scoring node

Node with unexplored child, a new
child is created

Incrementally
grow game tree
by creating
“lines of play”
from the top.

&

Update
estimates of
board values.

R

R

R

R
An averaging backup is used to update
the value estimates of all nodes on the

path from the root to the new node

The UCT Algorithm

Visit count update

State utility update

Select each child node based on UCB
scheme.

UCT versus Minimax

UCT Tree Minimax Tree

•  Asymmetric tree
•  Best-performing method

for Go

•  Full-width tree up to some
depth bound k

•  Best-performing method
for eg Chess

Search Spaces
n  Minimax performs poorly in Go due to the large

branching factor and lack of good board eval
n  To understand UCT better, we need domain with

another competitive method.
n  Considered domains where Minimax search

produces good play
¨ Chess

n  A domain where Minimax yields world-class play but UCT
 performs poorly

¨ Mancala
n  A domain where both Minimax and UCT yield competent

players ‘out-of-the-box’

¨ Synthetic games (ongoing work)

Mancala

n  A move consists of picking up all the stones from a pit and
‘sowing’ (distributing) them in a counter-clockwise fashion

n  Stones placed in the stores are captured and taken out of
circulation

n  The game ends when one of the sides has no stones left
n  Player with more captured stones at the end wins

Both UCT and Minimax search
produce good players.

store

pit

UCT on Mancala

n  We examine the three key components of UCT
I.  Exploration vs. Exploitation
II.  Random playouts
III.  Info backup: Averaging versus minimax

n  Insights lead to improved UCT player
n  We then deploy the winning UCT agent in a novel

partial game setting to understand how it wins

I) Full-Width versus Selective Search

Vary the value of the
exploration constant c
and measure the win-
rate of UCT against a
standardized Minimax
player

Optimal setting for c

n  Lesson: UCT challenges general notion that
forward (i.e. unsafe) pruning is a bad idea in game
tree search – not necessarily so! Smart exploration/
exploitation driven search can work.

Previous experience
game tree search: “full
width” + selective
extensions
outperforms “trying to
be smart in node
expansion.”

II) Random Playouts (Samples)
n  During search tree construction, UCT estimates

the value of a newly added node using a “random
playout” (resulting in a +1, -1, or 0).

n  Appeal: Very general. Don’t need to construct a
board/state evaluation function.

n  But, random games look very different from actual
games. Any real info in the result of random play?

n  A: Yes, but it’s a very “faint” signal. Other
aspects of UCT compensate.

n  Also, how many playouts (“samples”) per node?
(surprise)

How many samples per leaf is optimal?

Given a fixed budget, should we examine fewer nodes
more carefully or more nodes, with each node
evaluated less accurately?

4000 nodes in tree, 5
playouts per node

2000 nodes in tree, 10
playouts per node

It is better to quickly examine many nodes than to get more random
playout samples per node.

a single playout per
leaf optimal!

Lesson: There is a weak but useful signal in random game
playout. *** Single *** sample is enough.

III) Utility estimates backup:
 Averaging versus Minimax
n  UCT uses an averaging strategy to back-up

reward values. What about using a minimax
backup strategy?

n  For random playout information (i.e., a very noisy
reward signal) averaging is best.

n  Confirmed on Mancala and with synthetic game
tree model.

n  Aside: Related to “infamous” game tree pathology:
Deeper minimax searches can lead to worse
performance! (Nau 1982; Pearl 1983).

Phenomenon is related to very noisy heuristics --- such as
random playout information.
Minimax uses heuristic estimates only from fringe of the
explored tree --- ignoring any heuristic information from
internal nodes.
UCT’s averaging over all nodes (including internal ones)
can compensate for pathology and near-pathology effects.

Improving over random playout info:
Heuristic evaluation

n  Unlike Go, we do have a good heuristic
available for Mancala
¨ Replace playouts with heuristics: UCTH

n  Heuristic much less noisy than random playout.
Therefore, consider minimax backup.
¨ We call it UCTMAXH

Allow both algorithms
to build the same
sized trees and
compare their win-
rates

Lesson: When a state evaluation heuristics is available, use
 minimax back-up in conjunction with UCT.

Final step: UCTMAXH versus Minimax

n  We study the win-rate of UCTMAXH against
Minimax players searching to various depths
¨ Both agents use the same state heuristic

n  We consider a hybrid strategy

X

X

X

X

X

X

X

X X

X X

X Region with no search traps, play UCTMAXH
versus Minimax

Region with search traps, play MM-16
versus MM-16

Mancala:
UCTMAXH vs. Minimax (w. alpha-beta)

Minimax
Look-ahead

Depth
Win-rate of UCTMAXH

6 Pits, 4 Stones per Pit 8 Pits, 6 Stones per Pit
Hybrid Hybrid

k = 6 0.76 0.72 0.71 0.68
k = 8 0.76 0.71 0.71 0.67

k = 10 0.75 0.65 0.69 0.65
k = 12 0.67 0.61 0.66 0.61

UCTMAXH outperforms MM UCTMAXH hybrid outperforms+ MM

Note: exactly same number of nodes expanded.
Difference fully due to exploration / exploitation strategy of UCT

UCT recap:
n  First head-to-head comparison UCT vs. Minimax

and first competitive domain.
n  Multi-armed bandit inspired game tree exploration

is effective.
n  Random playouts (fully domain-independent)

contain weak but useful information. Averaging
backup of UCT is the right strategy.

n  When domain information is available, use
UCTMAXH . Outperforms Minimax given exactly
the same information and # node expansions.

n  But, what about Chess?

Chess

What is it about the nature of the Chess search
space that makes it so difficult for sampling-style
algorithms, such as UCT?

We will look at the role of (shallow) search traps

Search Traps
Level-3 search trap
for white

State at risk

Search Traps in Chess

Random Chess Positions Positions from GM Games

Search traps in Chess are sprinkled throughout the search
space.

Identifying Traps

n  Given the ubiquity of traps in Chess, how good
is UCT at detecting them?
¨ Run UCT search on states at risk
¨ Examine the values to which the utilities of the children

of the root node converge
¨ Compare this to the recommendations of a deep

Minimax search (the ‘gold-standard’)

Identifying Traps

UCT-best Minimax-best Trap move
Level-1 trap -0.083 -0.092 -0.250
Level-3 trap +0.020 +0.013 -0.012
Level-5 trap -0.056 -0.063 -0.066
Level-7 trap +0.011 +0.009 +0.004

Utility of move that
UCT thinks is the
best

Utility assigned by
UCT to the move
deemed best by
Minimax

Utility assigned by
UCT to the trap move.
True utility: -1

For very shallow traps, UCT has little trouble distinguishing
between good and bad moves
With deeper traps, good and bad moves start looking the
same to UCT. UCT will start making fatal mistakes.

UCT conclusions:
n  Promising alternative to minimax for adversarial

search.
n  Highly domain-independent.
n  Hybrid strategies needed when search traps are

present.
n  Currently exploring applications to generic

reasoning using SAT and QBF.
n  Also, applications in general optimization and

constraint reasoning.
n  The exploration-exploitation strategy has

potential in any branching search setting!

